일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- CNN
- rnn
- 딥러닝
- vision transformer
- python
- ubuntu
- pychram
- 가상환경구축
- LSTM
- python 문법
- wsl2
- torch.nn.Module
- 파이썬문법
- 가상환경
- docker
- tensorflow
- Anaconda
- 머신러닝
- ViT
- objectdetection
- __call__
- pip install
- DeepLearning
- __init__
- pytorch
- torch.nn
- Deep learning
- 파이썬
- AI
- Torchvision
- Today
- Total
목록torch (2)
인공지능을 좋아하는 곧미남
pytorch의 패키지를 사용하여 Image Data를 Load하는 코드 설명과 과정에 대해서 알아보겠습니다. Data Augmentation과 os.listdir를 이용한 Window File folder에서 파일을 가져오는 방법도 있으니 참고하시면됩니다. 제가 pytorch에서 사용한 Dataloader관련 패키지는 "torch.utils.data.Dataset"과 "torch.utils.data.DataLoader"입니다. 오늘의 내용은 아래와 같이 간략히 정리됩니다. - INDEX - 1. import os를 이용한 image file명 불러와 list에 저장하기. 2. torch.utils.data.Dataset 클래스를 사용하여 저장된 image file명 list에서 file경로를 불러와 각..
오늘은 torch.nn.Module 패키지를 활용한 Deep Neural Network를 구축해보고, 내가 얻은 인사이트를 공유하겠습니다. 1. 저는 torch.nn.Module 패키지로 보통 클래스를 생성하는데, nn.Module을 기반클래스로 상속하여 파생클래스인 Model(CNN)을 생성하여 구축합니다. (여기선 CNN이라는 Class 명을 사용했습니다.) import torch import torch.nn as nn class CNN(nn.Module): def __init__(self, img_size, num_class): super(CNN, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 32, 3, 1, 1), nn.LeakyReLU(0..