반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- CNN
- python
- DeepLearning
- wsl2
- __init__
- 파이썬문법
- torch.nn.Module
- Anaconda
- Deep learning
- docker
- 파이썬
- LSTM
- python 문법
- pytorch
- torch.nn
- rnn
- 머신러닝
- pychram
- pip install
- ViT
- ubuntu
- tensorflow
- 딥러닝
- 가상환경
- Torchvision
- vision transformer
- AI
- __call__
- 가상환경구축
- objectdetection
Archives
- Today
- Total
목록Featuremap (1)
인공지능을 좋아하는 곧미남
[pytorch] BackBone Encoder Layer에서 Feature Map 추출
Image Feature를 학습하기 위해 BackBone으로 사용되는 많은 모델들이 있습니다. 그 중 ResNet50 구조에서 원하는 layer에서 feature map을 추출할 수 있는 코드를 pytorch를 이용해 구현해보겠습니다. 최종적인 목표는 Multi Layer의 Feature를 사용해서 Image Resolution(Scale)에 강건한 모델을 만들고 싶어 이런 방법을 생각해보았습니다. 오늘의 내용은 아래의 목차와 같습니다. 1. Multi-Scale를 사용하는 이유 및 장점 2. ResNet50 구조 3. ResNet50 구조에서 원하는 Layer의 Feature Map을 추출 4. 내용 고찰 정리1. Multi-Scale를 사용하는 이유 및 장점Feature pyramid networ..
code_study/pytorch
2022. 1. 17. 17:23